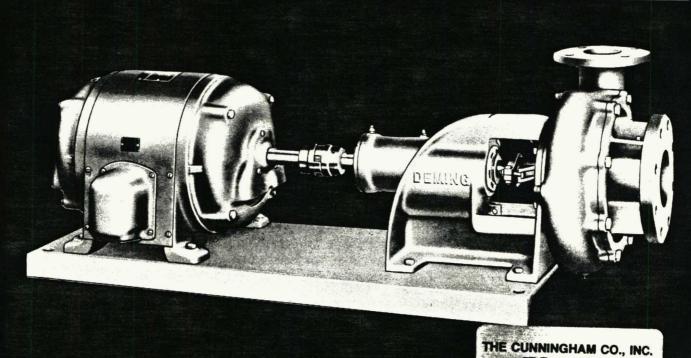

CRANE

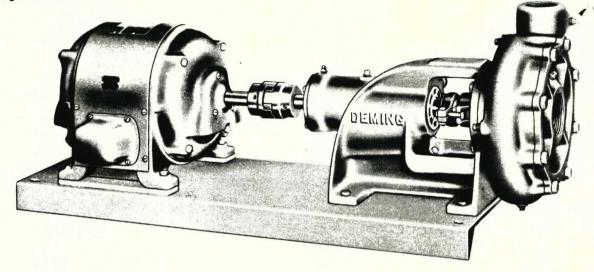
DEMING PUMPS Bulletin No. 4011 Section 14

END SUCTION — FRAME MOUNTED CENTRIFUGAL PUMPS

CAPACITIES TO 1500 G.P.M.


HEADS TO 250 FEET

PACKING BOX OR MECHANICAL SEAL


ADJUSTABLE IMPELLER

ALL IRON • BRONZE FITTED

ALL BRONZE • STAINLESS STEEL

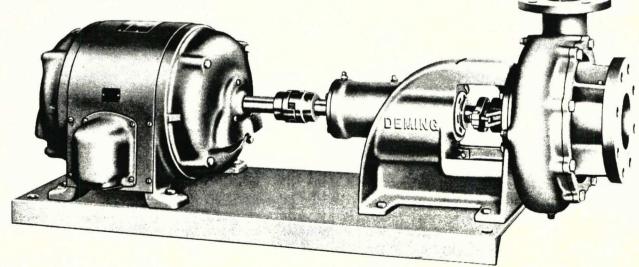
THE CUNNINGHAM CO., INC. 77 Terence Drive Pittsburgh, Pennsylvania 15236 Pleasant Hills (412) 653-0200

END SUCTION CENTRIFUGAL PUMPS

Figs. 4001, 4011, 4021, and 4021 H Crane-Deming end suction centrifugal pumps are designed to handle a wide range of fluids.

For fluids requiring other than standard cast iron construction, liquid ends, impeller and case components, may be made of special alloys.

All pumps listed in selection tables are furnished with right hand rotation, i.e., when looking towards pump from driving end, impeller rotates in a clockwise motion (indicated by arrow on casing). Left hand pumps (counter-clockwise rotation) are available in the following sizes:


Fig. 4001—Nos. 1, 1½ and 2½ Fig. 4011—Nos. 1¼S, 1½S, 2S, 1½M, 2M, 3M, and 4M

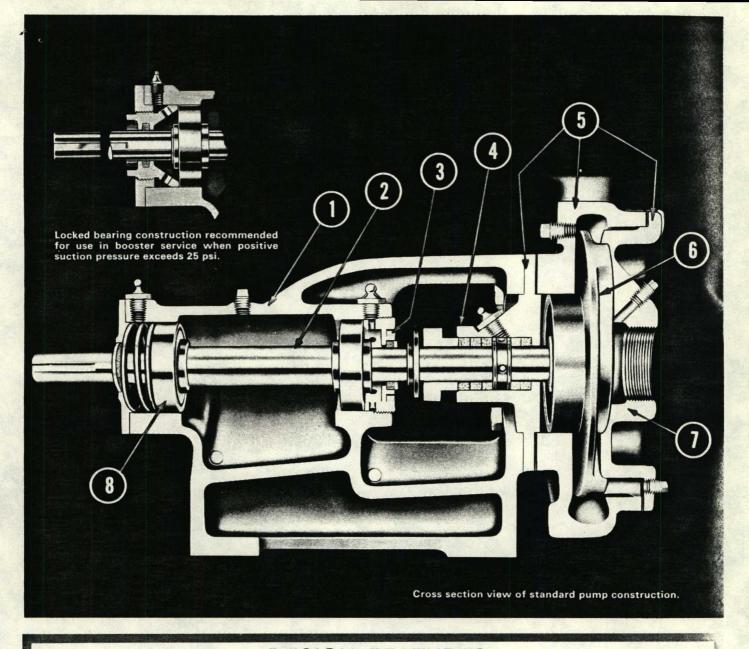

2M, 3M, and 4M Fig. 4021—Nos. 1½L, 1½M, 2M, 3M, 4M, 5M, and 5MS

Fig. 4021H-Nos. 11/4S, 11/2S, 2S, 2M, 3M

Pumps are available in sizes from 1- to 6-inch discharge, capacities to 1500 gallons per minute; heads to 250 feet (see selection tables).

Flanged connections are standard construction on all pumps with discharge 3" and larger . . . optional on smaller sizes except 2½". Flanges are 125 lb. ASA for cast iron and bronze, 150 lb. ASA flat faced for stainless steel alloys

DESIGN FEATURES

- FRAME Heavy duty cast iron with precision bore provides rigid support for rotating assembly.
- SHAFT Large diameter shaft supported by two widely spaced ball bearings provides smooth quiet operation.
- SHAFT ADJUSTING NUT Permits axial adjustment of impeller for regulation of capacity and head and to compensate for wear without dismantling pump.
- 4. STUFFING BOX Furnished as standard with packing, lantern ring, and split gland for easy servicing. Special stuffing boxes or mechanical seals are available (See page 4).
- 5. LIQUID END Four-piece assembly with separate suction head permits easy access to impeller, low cost maintenance. Standard cast iron construction designed for working pressure of 150 psi. Can be manufactured of other materials to meet special applications without changing power end.
- IMPELLER—Semi-open adjustable impeller with extra heavy vanes gives outstanding performance

- and wear resistance. Impeller keyed to shaft with precision taper fit to assure easy impeller removal and perfect alignment (see page 4).
- SUCTION HEAD Separately removable, permits inspection and servicing without disturbing discharge piping or pump alignment.
- 8. BEARINGS Two widely spaced ball bearings provide solid shaft support. Fig. 4021 frame has a double row bearing at the stuffing box end. Fig. 4021H frame has larger shaft with double row bearings at both ends.

INTERCHANGEABILITY – Figs. 4011, 4021 and 4021H power frames are each suitable for several sizes of liquid ends. In addition, Figs. 4011, 4021 and 4021H liquid ends thru 3" are interchangeable. This permits 4011 liquid ends to be assembled on 4021 power frames thus providing a much heavier pump for heavy duty service. Selection tables indicate the most suitable combinations for various pumping conditions.


CONSTRUCTION FEATURES

STANDARD STUFFING BOX CONSTRUCTION

Extra-deep with ample space for five rings of dieformed packing plus a lantern ring. A lubrication fitting at the lantern ring provides for a grease seal against air leakage into pump, and prolongs life of packing.

For high suction lift, grease fitting may be replaced with flexible tubing from tapped opening on pump discharge to provide a liquid seal.

FLUSHING TYPE STUFFING BOX

This construction is ideal for shaft cooling, or high vacuum sealing. This option is recommended on pumps operating at or above 212°F.

Flushing-type stuffing box

SEMI-OPEN IMPELLER

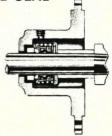
Suction side

Balance side

Impellers are of the solids-handling type with extra heavy vanes. Semiopen, these impellers permit passage of dirty liquids and/or liquids containing foreign material.

Running clearance between suction side of impeller and casing is adjustable to compensate for wear or regulate capacity. This axial adjustment feature is standard on all sizes.

This impeller with wiping vanes on balance side is suitable for handling liquids with lime, chips, or other similar solids which tend to coat metal surfaces or clog space between casing and impeller.


NOTE: Wiping vanes are not available on Fig. 4021H, Size 6ML

MECHANICAL SHAFT SEAL

A mechanical shaft seal can be furnished in lieu of a stuffing box. The mechanical seal requires a different housing, and a chrome plated or stainless steel shaft. Existing installations with stuffing box construction can be converted by substituting proper parts.

SINGLE MECHANICAL SEAL

Recommended for clear liquids at temperatures not exceeding 180°F. A portion of the liquid being pumped is recirculated from the discharge through the seal chamber as a lubricant and coolant.

SINGLE MECHANICAL SEAL WITH CHOKER RING

Recommended for general hot water circulating service with clear water at temperatures up to 225°F. A portion of the water being pumped is recirculated from the discharge to pressurize the seal chamber, and to keep the liquid from vaporizing. The choker ring or throat bushing restricts the flow back to the impeller. For higher temperatures, or more severe service conditions, a heat exchanger may be used to cool the liquid being recirculated to an optimum 160°F.

DOUBLE MECHANICAL SEAL

Recommended when liquid being pumped is abrasive, non-lubricating, or at temperatures exceeding the design limitations for single seals. The seal chamber must be pressurized, either with liquid from the pump discharge through a filter or with clear liquid from an outside source.

NOTE: For special seal applications, refer conditions to factory for recommendations.

Materials of Construction												
PART	Std. All Iron	Bronze Fitted	All Bronze	*Special Metal								
Frame Suction Head Casing Impeller Shaft Stuffing Box Lantern Ring Gland	Cast Iron Cast Iron Cast Iron Cast Iron SAE 1045 Steel Cast Iron Cast Iron Cast Iron	Cast Iron Cast Iron Cast Iron Bronze Stainless Cast Iron Bronze Cast Iron	Cast Iron Bronze Bronze Bronze Stainless Bronze Bronze Bronze	Cast Iron Metal Specified								

SELECTION TABLE

Motor Driven-1750 R.P.M. Figs. 4001, 4011, 4021 and, 4021H

Performance for Fig. 4001

Performance for Fig. 4011

Performance for Fig. 4021 and 4021H

	THE REAL PROPERTY.					TOT	AL F	IEAD	—In	Feet						
	10	15	20	25	30	35	40	50	60	70	80	90	100	120	140	150
Capacity In G.P.M.	Unit No or Std Imp. Dia Size H P	Unit No or Std Imp Dia Size H P	Unit No. or Std Imp Dia. Size H P.	Unit No. or Std. Imp Dia. Size H P	Unit No. or Std. Imp. Dia. Size H.P.	Unit No. or Std. Imp Dia. Size H.P.	Unit No. or Std. Imp. Dia. Size H.P.									
20	100	1 K	100	1 1	1 3	1	432 1%S %	433 1%S 1	434 1%S 1%	441 1½M 3	441 1½M 3	442 1%M 5	442 1%M 5	445 1%L 7%	446 1½L 10	
30	1 2	485	1 %	1 8	1 2		432 1%S %	434 1%\$ 1%	434 1%\$ 1%	441 1½M 3	441 1½M 3	442 1%M 5	442 1%M 5	445 1%L 7%	446 1½L 10	
40	485 1 ×	4 K	1 ×	1 %	1 8	1k 1	432 1%S %	434 1%\$ 1%	434 1%S 1%	441 1½M 3	441 1½M 3	442 1%M 5	442 1%M 5	445 1%L 7%	445 1½L 10	· · · · · · · · · · · · · · · · · · ·
50	1 K	1 %	1 76	3 %	1 %	936 1% 1	433 1%S 1	434 1%\$ 1%	434 1%S 1%	441 1%M 3	442 1%M 5	442 1%M 5	442 136M 5	445 1%L 7%	446 1½L 10	
90	412 131 X	1X K	12, 12 012	13 X	136 136 3	210 12 1	433 1%\$ 1	434 1%8 1%	439 1%S 2	441 1½M 3	442 1%M 5	442 1%M 5	442 1%M 5	445 1½L 7½	448 1½L 10	
70	912 1% %	412 1% %	136 X	413 1% %	916 1% 1	433 1%\$ 1	434 1%5 1%	434 1%S 1%	439 1½S 2	441 1½M 3	1%M 5	442 1½M 5	442 1½M 5	445 1%L 7%	1%L 10	······
80	1R R	412 1% %	413 16 X	916 134 3	818 134)	438 1%\$ 1%	438 1½S 1½	439 1%S 2	439 1½S 2	'441 1½M 3	442 1%M 5	1%M 5	458 2M 7½	445 1%L 7%	446 1%L 10	
00	412 18 K	413 116 K	18 8 413	135 T	12. 1	438 1½\$ 1½	438 1%S 1%	439 1%S 2	454 · 25 3	441 1½M 3	442 1%M 5	442 1½M 5	442 2M 7½	445 1½L 7½	446 1%L 10	
100	415 26 1	415 2% (1	2% 1	437 1½S 1	438 1%S 1%	438 1%\$ 1%	438 1%S 1%	439 1%S 2	441 1½M 3	441 1½M 3	441 1½M 5	442 1½M 5	458 2M 7½	445 1½L 7½	446 1½L 10	
125	415 2% 1	415 2% 1	28 1	28 18	438 1%\$ 1%	439 1%S 2	439 1%S 2	454 2S 3	441 1½M 3	442 1½M 5	442 1½M 5	458 2M 7½	458 2M 7½	446 1½L 10	445 1½L 18	
150	816 26 1	415 2% 1	415 2% 1	210 21/4 11/4	452 25 1%	453 2S 2	453 25 2	454 2S 3	442 1%M 5	442 1%M 5	442 1%M 5	458 2M 7½	445 1½L 7½	446 1½L 10		
	28 1	416 25 TX	416 25 16	817 2% 2	417 2% 2	211 212 3	418 2% 3	464 3S 5	457 2M 5	458 2M 7½	458 2M 7½	458 2M 7½	469 3M 15			
250	418 2% 1%	416 2% 1%	417 28 2	417 2% 2	416 2% 3	910 25 0	464 3S 5	464 3S 5	458 2M 7½	458 2M 7%	458 2M 7½	468 3M 10	469 3M 15			
300	417 28 2	417 297 2	207	5K 3	918 2% 3	464 3S 5	464 3S 5	466 3M 5	467 3M 7½	467 3M 7½	468 3M 10	468 3M 10	469 3M 15			
	480 4S 2	480 4S 2	481 4S 3	464 3S 5	464 3S 5	464 3S 5	466 3M 5	483 4S 7%	468 3M 10	468 3M 1D	468 3M 10	469 3M 15				
	481 45 3	481 4S 3	481 45 3	482 45 5	482 45 5	482 45 5	483 45 7%	483 4S 7½	468 3M 10	469 3M 15	469 3M 15	474 3M 15				
	482 4S 5	482 4S 5	482 4S 5	482 45 5	483 45 7½	483 45 7½	483 45 7½	473 4M 10	474 4M 15	474 4M 15	474 4M 15	494 5MS 20				
700	482 4S 5	482 45 5	483 45 7½	483 45 7½	483 45 7½	483 45 7½	673 4M 10	474 4M 15	474 4M 15	474 4M 15	474 4M 15	479 5M 20				
	478	476 5M 10	475	476	476 5M 10		-477 5M 15	477 5M 15	477	478 5M 20	478					
900	478 5M 10	476 5M TD	476 5M 10	476 5M 10	476 5M 10	877 500 15	477 5M 15	477 5M 15	476 5M 20	478 5M 20	478 5M 25					
1000	406 SM 18	496 SM 10	496 5M 10	496 6M 10	477 5M 15	477 5M 15	477 5M 15	478 5M 20	478 5M 20	479 5M 25	489H 6ML 40					
1200	496 6M 10	496 6M 10	487 6M 15	487 5M 15	497 SM 15	487 BM 15	488 6M 20	498 6M 20	499 6M 25	488H 6ML 40	489H 6ML 40					
1	487 SM 15	497 6M 15	497 SM 15	498 6M 20	498 6M 20	408 SM 20	490 6M Z5	498 EM 25	499 6M 25	489H 5ML 40						

For higher capacities, refer to Crane-Deming fig. 4060 series pumps in catalog section 14B.

Motor selections are based upon drip-proof motors which have 15% service factor. Totally enclosed and explosion-proof motors do not have this service factor. If substituted for drip-proof motors, it may be necessary, under certain specific operating conditions, to cut the impeller diameter or use the next size larger motor.

Pump casings and impellers are designated as follows: "S" indicates suitable casings for impellers up to 8 inch maximum diameter. "M" indicates casings suitable for impellers up to 10 inch maximum diameter. "L" indicates casings suitable for impellers up to 12 inch maximum diameter.

CRANE

ALVES • PUA

FITTINGS

WATER TREATMENT

PLUMBING

DEMING PUMPS

CRANE CO DEMING DIV

884 SOUTH BROADWAY

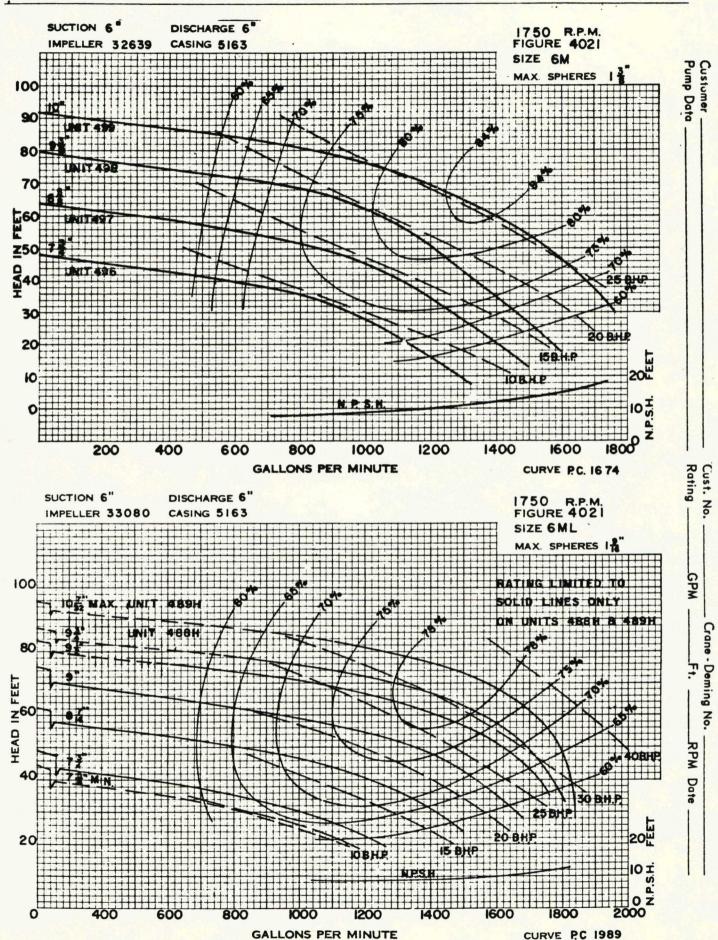
SALEM, OHIO 44460

SELECTION TABLE

Motor Driven-3500 R.P.M. Figs. 4001, 4011, 4021 and 4021H

Performance for Fig. 4001 Performance for Fig. 4011 Performance for Fig. 4021 and	4021 F
---	--------

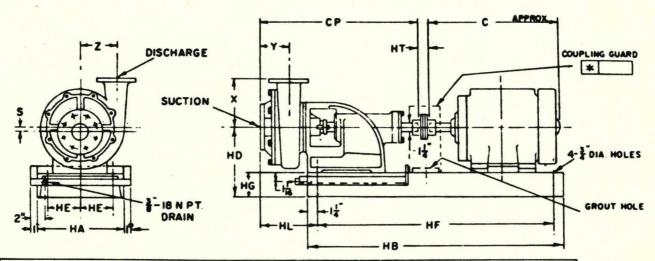
For more accurate selection refer to performance curves to determine the impeller diameter and motor horsepower required for the actual operating conditions.


				T	OTAL	HEAL	D—In I	Feet				
	40	50	60	80	100	120	140	160	180	200	220	240
Capacity in G.P.M.	Unit No. or Std. Imp. Dia. Size H.P.	Unit No. or Std. Imp. Dia Size H.										
10	505	505	606 1 1	507	508 1 3	508	509 1 5	509 1 5				
20	505	505 3 4	906	1 2	508	500 3	509 1 5	500 1 5		1		
30	505	906	508 1 1K	1 2	600 3 3	508 1 3	1 5	534H 1%S 7%	534H 1%S 7%	534H 1%S 7%	535H 1%S 10	535H 1%S 1
40	505 3	506	500 1 15	507	1 508 1 3	1 3	1 500 1 5	534H 1%S 7%	534H 1%S 7%	535H 1%S 10	535H 1%S 10	535H 1%S 1
50	505	1 1	606 1 1%	1 2	508	1 508 1 3	509 1 5	534H 1%S 7%	534H 1%S 7%	535H 1%S 10	535H 1%S 10	535H 1%S 1
60	505 1 1	500 1 3%	508 1 7%	507 1 2	508 1 3	500 1 6	500 1 5	534H 1¼S 7½	534H 1%S 7%	535H 1%S 10	535H 1%S 10	535H 11/4S
70	806	506 1 1%	1 2	500	1 3	509 1 5	509 1 5	534H 1¼S 7½	535H 1%S 7%	535H 1%S 10	535H 1%S 10	535H 11/4S
80	908 134	807 1 2	1 2	500	508 1 3	1 5	514 1% 7%	534H 1¼S 7½	534H 1%S 7%	535H 1¼S 10	535H 1%S 10	5351 1%S
90		507 1 2	7 60s 1 3	508 1 3	509 1 5	509 1 5	514 1% 7%	534H 1%S 7%	534H 1%S 7%	535H 1%S 10	535H 1%S 10	5351 1%S
100		812 1% 3	812 812	812 116 3	513 15 5	514 1% 7%	814 1% 7%	534H 1%S 7%	535H 1%S 10	535H 11/4S 10	535H 1%S 10	539 1
125		812 1% 3	612 1% 3	513 TK 5	513 13 5	514 1% 7%	814 1% 7%	538H 1½S 10	538H 1%S 10	539H 1½S 15	539H 1½S 15	5391 1½S
150		812 1% 3	812 18 3	513 19 5	813 1% 5	1314 134 736	538H 1½S 10	538H 1½S 10	538H 1½S 10	539H 1%S 15	539H 1½S 15	554 1 2S
175		513 114 5	913 18 5	913 1% 5	514 15 75	514 1% 7%	538H 1½S 10	538H 1½S 10	539H 1½S 15	639H 1½S 15	554H 2S 15	554H 2S 2
200	********	550 2S 5	560 25 5	551 25 7%	561 25 7½	962 25 10	552 25 10	553H 2S 15	553H 2S 15	554H 2S 20	554H 2S 20	554 1 2S
225		550 2S 5	550 25 5	561 25 7%	551 25 7%	862 28 10	553H 2S 15	553H 2S 15	553 H 2S 15	554H 2S 20	554H 2S 20	554H 2S 2
250		561 25 7%	551 25 7%	551 25 7%	552 25 10	582 25 10	553H 2S 15	553H 2S 15	553H 2S 15	554H 2S 20	554H 2S 20	
275		661 25 7%	561 25 7%	551 25 7%	562 25 10	553H 2S 15	553H 2S 15	553H 2S 15	554H 2S 20	554H 2S 20	554H 2S 20	
300		817 2% 7%	817 2% 7%	518 26 10	510 1% 15	557H 2M 15	558H 2M 20	558H 2M 20	558H 2M 20			
350		517 2% 7%	518 28 10	518 2K 10	519 ZX 15	567H 3M 20	567H 3M 20	568H 3M 25				
400		518 2% 10	510 26 10	519 25 15	519 28 18	567H 3M 20	567H 3M 20	568H 3M 25				
450		518 2% 10	518 29 10	519 2% 15	567 3M 20	567H 3M 20	568H 3M 25					
500		566 3M 15	566 3M 15	567H 3M 20	567H 3M 20	567H 3M 20	568H 3M 25					
550	Trains.	566 3M 15	566 3M 15	567H 3M 20	567H 3M 20	568H 3M 25			320			

Motor selections are based upon drip-proof motors which have 15% service factor. Totally enclosed and explosion-proof motors do not have this service factor. If substituted for drip-proof motors, it may be necessary, under certain specific operating conditions ,to cut the impeller diameter or use the next size larger motor.

Pump casings and impellers are designated as follows:

"S" indicates casings suitable for impellers up to 8 inch maximum diameter. "M" indicates casings suitable for impellers up to 10 inch maximum.


CRANE - DEMING PUMPS CRANE CO. SALEM, OHIO, U.S.A.

SECTION 14 END SUCTION CENTRIFUGAL PUMPS BULLETIN 4011

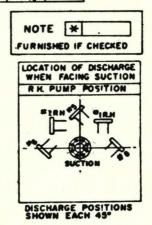

DIMENSIONS OF PUMPS WITH TYPE C DRIP LIP STEEL BASE, COUPLING AND MOTOR

FIG. 4021 (OR 4021 H) - SIZES 3S, 3M, 4M, 4MS, 5M, 5MS, 6M AND 6ML - SIZES 1¼S, 1½S, 1½M, 1½L, 2S AND 2M (SPECIAL FLANGED)

					PUMP	DIME	NSIONS	IN INC	HES					
PUMP		SUCTIO	N (125			DISCHAR	RGE (125	•						
SIZE	SIZE	PLG.	BOLTS	BOLT	SIZE	PLG.	BOLTS	BOLT	×	Y	Z	CP	HL	S
145	1 1	5	4-1	3 7	14	4 8	4-1	3 1/2	6	3 %	42	23	6	-
145	2	6	4-	43	1 1/2	5	4-1	3 8	5 }	3 }	4 }	23 2	7.6	-
1 ½M	2	6	4-8	4 }	11/2	5	4-1	3 7	6 1/2	3 4	5 }	23	7,3	-
IZL	2	6	4-3	4 3	1 1/2	5	4-1	3 7	7 1/2	3 4	6 }	23	7 14	-
25	2	7	4-5	5 2	2	6	4-5	4 3	64	3 %	4	23	74	-
2M	3	7 2	4-8	6	2	6	4-5	4 }	7	34	5	23 4	7 16	-
35	4	9	8-3	7 1	3	7 1	4-3	6	7	57	54	26	9 }	-
3 M	4	9	8-3	7 1/2	3	7 1/2	4-1	6	8	5%	64	26	9 }	-
4 M 4 MS	5	10	8-3	8 2	4	9	8-5	7 2	9	6	6 2	26	10%	2
SMS SMS	6	11	8-3	91/2	5	10	8-3	8 1/2	9	6	7 1	261	10%	1
FW9	6	11	8-1	9 1	6	11	8-3	9 1	9	64	8	26	10%	-

							BAS	E D	IME	NSIO	NS	IN II	NCHE	ES						
FRAME NO.	143T	145T	182T	184T	213T	215T	254T	256T	284TS	284T	286TS	286T	324TS	324T	326TS	326T	364TS	364T	365TS	3657
BASE NO.	27501	27502	27502	27503	27503	27503	27504	27505	27504	27505	27505	27505	27507	27507	27507	27507	27507	27507	27507	27508
HA	12	12	12	12	12	12	15	15	15	15	15	15	18	18	18	18	18	18	18	18
нв	28	32	32	36	36	36	40	43	40	43	43	43	46	46	46	46	46	46	46	51
С	13	13	14	15	17	191	227	24	24	25	26	27	27	28	28	304	31	33	32	34
HD	10	10	10	10	10	10	10	10	10	10	10	10	12	12	12	12	13	13	13	13
HE	43	43	4}	4}	43	43	6	6	6	6	6	6	71	71	71	71	71	71	71	7
HF	25	29	29	33	33	33	37	40	37	40	40	40	43	43	43	43	432	43	43	48
HG	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4
HT	1	3	1	1	1	3	1	1	1	1	1	1	1	1			1	1	1	

CUSTON	AER					CO. NO.							
PROJE(CT				Val. 1710	CONTRACTOR ENGINEER							
CUSTON IDENT.													
PUMP	FIG. NO.	SIZE	CURVE NO.	G. P. M.	HEAD	SP GR.	TEMP	ROTATION	PACKING	/SEAL			
DATA													
MOTOR	MFGR.	H. P.	R.PM.	PHASE-CYCL	E- VOLTAGE	FRAME	ENCLOSURE	INSULATION	FURNISHED	BY MOUNTED B			
DATA									<u> </u>				
SHOP C	PRDER NO.				CERTIFI	CERTIFIED BY							